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Introduction. This subject lies a bit skew to my main areas of interest. I feel a
need, therefore, to explain why, somewhat to my surprise, I find myself writing
about it today—lacing my boots, as it were, in preparation for the hike that
will take me to places in which I do have an established interest.

On 3 November 1999, Thomas Wieting presented at Reed College a physics
seminar entitled “The Penrose Dodecahedron.” That talk was inspired by the
recent publication of a paper by Jordan E. Massad & P. K. Arvind,1 which in
turn derived from an idea sketched in Roger Penrose’s Shadows of the Mind
() and developed in greater detail in a paper written collaboratively by
Penrose and J. Zamba.2 Massad & Aravind speculate that Penrose drew his
inspiration from Asher Peres, but there is no need to speculate in this regard; a
little essay entitled “The Artist, the Physicist and the Waterfall” which appears
on page 30 of the February  issue of Scientific American describes the
entangled source of Penrose’s involvement in fascinating detail.3 Not at all
speculative is their observation that Penrose/Zamba drew critically upon an
idea incidental to work reported by the then -year-old Etorre Majorana in a
classic paper having to do with the spin-reversal of polarized particles/atoms
in time-dependent magnetic fields.4 Massad/Aravind remark that “whatever
the genesis of [Penrose/Zamba’s line of argument, they] deftly manipulated
a geometrical picture of quantum spins due to Majorana to deduce all the
properties of [certain] rays they needed in their proofs of the Bell and Bell-
Kochen-Specker theorems.”

1 “The Penrose dodecahedron revisited,” AJP 67, 631 (1999).
2 “On Bell non-locality without probabilities: More curious geometry,” Stud.

Hist. Phil. Sci. 24, 697 (1993). The paper is based upon Zamba’s thesis.
3 The story involves Maurits C. Escher in an unexpected way, but hinges on

the circumstance that Penrose was present at a seminar given by Peres in ,
the upshot of which was published as “Two simple proofs of the Kochen-Specker
theorem,” J. Phys. A: Math. Gen. 24, L175 (1991). See also Peres’ Quantum
Theory: Concepts & Methods ().

4 “Atomi orientati in campo magnetico variabile,” Nuovo Cimento 9, 43–50
(1932).
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Massad & Avarind suggest that “an even bigger virtue of the Majorana
approach [bigger, that is to say, than its computational efficiency] is that it
seems to have hinted at the existence of the Penrose dodecahedron in the first
place,” but observe that “the Majorana picture of spin, while very elegant
and also remarkably economical for the problem at hand, is still unfamiliar to
the vast majority of physicists,” so have undertaken to construct a “poor man’s
version” of the Penrose/Zamba paper which proceeds entirely without reference
to Majorana’s techniques.

In their §2, Massad & Aravind draw upon certain results which they
consider “standard” to the quantum theory of angular momentum, citing such
works as the text by J. J. Sakuri5 and the monograph by A. R. Edmonds.6

But I myself have never had specific need of that “standard” material, and
have always found it—at least as it is presented in the sources most familiar to
me7—to be so offputtingly ugly that I have been happy to avoid it; what may
indeed be “too familiar for comment” to many/most of the world’s quantum
physicists remains, I admit, only distantly familiar to me. So I confronted afresh
this elementary question:

What are the angular momentum matrices
characteristic of a particle of (say) spin 3

2?

My business here is to describe a non-standard approach to the solution of such
questions, and to make some comments.

SU(2), O(3) and all that. I begin with brief review of some standard material,
partly to underscore how elementary are the essential ideas, and partly to
establish some notational conventions. It is upon this elementary foundation
that we will build.

Let M be any 2× 2 matrix. From det(M− λI) = λ2− (trM)λ+ det M we
by the Cayley-Hamilton theorem have

M –1 =
(trM)I−M

det M
unless M is singular

which gives

M –1 = (trM)I−M if M is “unimodular” : det M = 1

Trivially, any 2× 2 matrix M can be written

M = 1
2 (trM)I +

{
M− 1

2 (trM)I
}︸ ︷︷ ︸ (1.1)

traceless

while we have just established that in unimodular cases

M –1 = 1
2 (trM)I−

{
M− 1

2 (trM)I
}

(1.2)

5 Modern Quantum Mechanics ().
6 Angular Momentum in Quantum Mechanics ().
7 Leonard Schiff, Quantum Mechanics (3rd edition ), pages 202–203;

J. L. Powell & B. Crasemann, Quantum Mechanics (), §10–4.
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Evidently such a matrix will be unitary if and only if
• a0 ≡ 1

2 trM is real, and

• A ≡
{
M− 1

2 (trM)I
}

is antihermitian: At = −A .
The Pauli matrices

σσ1 ≡
(

0 1
1 0

)
, σσ2 ≡

(
0 −i
i 0

)
, σσ3 ≡

(
1 0
0 −1

)
(2)

are traceless hermitian, and permit the most general such A -matrix to be
notated

A = i
{
a1σσ1 + a2σσ2 + a3σσ3

}
We then have

M =
(

a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3

)
(3.1)

and recover unimodularity by imposing upon the real numbers
{
a0, a1, a2, a3

}
the requirement that

a2
0 + a2

1 + a2
2 + a2

3 = 1 (3.2)

Such matrices with henceforth be denoted S , to emphasize that they have been
Specialized; they provide the natural representation of the special unimodular
group SU(2). In terms of the so-called Cayley-Klein parameters8

α ≡ a0 + ia3

β ≡ a2 + ia1

}
(4)

we have

S =
(

α β
−β∗ α∗

)
with α∗α + β∗β = 1 (5)

Note the several points at which the argument has hinged on circumstances
special to the 2-dimensional case.

Swifter and more familiar is the line of argument that proceeds from the
observation that

S = eiH

is unitary if and only if H is hermitian, and by det S = etr(iH ) will be unimodular
if and only if H is also traceless. The most general such H can in 2-dimensions
be written

H = h1σσ1 + h2σσ2 + h3σσ3 =
(

h3 h1 − ih2

h1 + ih2 −h3

)

Then

H2 = (h2
1 + h2

2 + h2
3 )

(
1 0
0 1

)
8 See §4–5 in H. Goldstein, Classical Mechanics (2nd edition ).
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which implies and is implied by the statements

σσ2
1 = σσ2

2 = σσ2
3 = I (6.1)

σσ1σσ2 = −σσ2σσ1

σσ2σσ3 = −σσ3σσ2

σσ3σσ1 = −σσ1σσ3


 (6.2)

Also demonstrably true—but not implicit in the preceding line of argument—
are the statements

σσ1σσ2 = i σσ3

σσ2σσ3 = i σσ1

σσ3σσ1 = i σσ2


 (6.3)

Results now in hand lead us to write

hhh = θkkk : kkk a real unit 3-vector

and obtain

S = exp
[
iθ

{
k1σσ1 + k2σσ2 + k3σσ3

}]
= cos θ · I + i sin θ ·

{
k1σσ1 + k2σσ2 + k3σσ3

}
(7.1)

=
(

cos θ + ik3 sin θ (k2 + ik1) sin θ
−(k2 − ik1) sin θ cos θ − ik3 sin θ

)
(7.2)

in which notation the Cayley-Klein parameters (4) become

α = cos θ + ik3 sin θ

β = (k2 + ik1) sin θ

}
(8)

The Cayley-Klein parameters were introduced by Felix Klein in connection
with the theory of tops; i.e., as aids to the description of the 3-dimensional
rotation group O(3), with which we have now to establish contact. This we will
accomplish in two different ways. The more standard approach is to introduce
the traceless hermitian matrix

X ≡ x1σσ1 + x2σσ2 + x3σσ3 =
(

x3 x1 − ix2

x1 + ix2 −x3

)
(9)

and to notice that X �−→ X ≡ S –1 XS sends X into a matrix which is again
traceless hermitian, and which has the same determinant:

det X = det X = −(x2
1 + x2

2 + x2
3 )

Evidently

X �−→ S –1 XS ≡
(

x3 x1 − ix2

x1 + ix2 −x3

)
: S ∈ SU(2) (10)

and 
x1

x2

x3


 �−→ R


x1

x2

x3


 ≡


x1

x2

x3


 : R ∈ O(3) (11)
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say substantially the same thing, but in different ways.
The simplest way to render explicit the SU(2) ↔ O(3) connection is to

work in the neighborhood of the identity; i.e., assume θ to be small and to
retain only terms of first order. Thus

S = I + iδθ ·
(
k1σσ1 + k2σσ2 + k3σσ3

)
+ · · · (12)

and X ≡ S –1 XS becomes

X =
{

I− iδθ ·
(
k1σσ1 + k2σσ2 + k3σσ3

)}
·
(
x1σσ1 + x2σσ2 + x3σσ3

){
I + iδθ ·

(
k1σσ1 + k2σσ2 + k3σσ3

)}
= X− iδθ

[(
k1σσ1 + k2σσ2 + k3σσ3

)
,
(
x1σσ1 + x2σσ2 + x3σσ3

)]
+ · · ·

= X + δX

But by (6)[
etc.

]
= (k1x2−k2x1)

[
σσ1, σσ2

]
+(k2x3−k3x2)

[
σσ2, σσ3

]
+(k3x1−k1x3)

[
σσ3, σσ1

]
= 2i

{
(k1x2−k2x1)σσ3 +(k2x3−k3x2)σσ1 +(k3x1−k1x3)σσ2

}
so we have

δX = δx1σσ1 + δx2σσ2 + δx3σσ3 = 2δθ
{

etc.
}

which can be expressed
 δx1

δx2

δx3


 = 2δθ


 0 −k3 k2

k3 0 −k1

−k2 k1 0





x1

x2

x3




More compactly δxxx = 2δθ ·Kxxx with K = k1T1 + k2T2 + k3T3, which entails

T1 =


 0 0 0

0 0 −1
0 +1 0


 , T2 =


 0 0 +1

0 0 0
−1 0 0


 , T2 =


 0 −1 0

+1 0 0
0 0 0


 (13)

The real antisymmetric matrices T are—compare (6.3)—not multiplicatively
closed, but are closed under commutation:[

T1,T2

]
= T3[

T2,T3

]
= T1[

T3,T1

]
= T2


 (14)

Straightforward iteration leads now to the conclusion that

S = exp
[
iθ

{
k1σσ1 + k2σσ2 + k3σσ3

}]
↑� (15)

R = exp
[
2θ

{
k1T1 + k2T2 + k3T3

}]
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If
{
x1, x2, x3

}
refer to a right hand frame, then R describes a right handed

rotation through angle 2θ about the unit vector kkk. Notice that—and how
elementary is the analytical origin of the fact that—the association (15) is
biunique: reading from (7.1) we see that

S→ −S as θ advances from 0 to π

and that S returns to its initial value at θ = 2π. But from the quadratic
structure of X ≡ S –1 XS we see that ±S both yield the same X ; i.e., that R

returns to its initial value as θ advances from 0 to π, and goes twice around as
S goes once around. One speaks in this connection of the “double-valuedness of
the spin representations of the rotation group,” and it is partly to place us in
position to do so—but mainly to prepare for things to come—that I turn now
to an alternative approach to the issue just discussed.

Introduce the

2-component spinor ξ ≡
(

u
v

)
(16)

(which is by nature just a complex 2-vector) and consider transformations of
the form

ξ �−→ ξ ≡ S ξ (17)

From the unitarity of S (unimodularity is in this respect not needed) it follows
that

ξtξ = ξtξ (18)

In more explicit notation we have(
u
v

)
=

(
α β
−β∗ α∗

) (
u
v

)
(19)

and
u∗u + v∗v = u∗u + v∗v (20)

At (8) we acquired descriptions of α and β to which we can now assign rotational
interpretations in Euclidean 3-space. But how to extract O(3) from (19)
without simply hiking backward along the path we have just traveled?

Kramer’s method for recovering O(3). Hendrik Anthony Kramers (–)
was very closely associated with many/most of the persons and events that
contributed to the invention of quantum mechanics, but his memory lives in the
shadow of such giants as Bohr, Pauli, Ehrenfest, Born, Dirac. Max Dresden, in a
fascinating recent biography,9 has considered why Kramers career fell somewhat
short of his potential, and has concluded that a contributing factor was his
excessive interest in mathematical elegance and trickery. It is upon one (widely
uncelebrated) manifestation of that personality trait that I base much of what
follows.

9 H. A. Kramers: Between Tradition and Revolution ().
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In / Kramers developed an algebraic approach to the quantum
theory of spin/angular momentum which—though clever, and computationally
powerful—gained few adherents.10 A posthumous account of Kramers’ method
was presented in a thin monograph by one of his students,11 and I myself have
written about the subject on several occasions.12

We proceed from this question:

What is the


uu

uv
vv


→


uu

uv
vv


 induced by (19)?

Immediately 
uu

uv
vv


 =


 (αu + βv)(αu + βv)

(αu + βv)(−β∗u + α∗v)
(−β∗u + α∗v)(−β∗u + α∗v)




Entrusting the computational labor to Mathematica, we find

=


 α2 2αβ β2

−αβ∗ αα∗ − ββ∗ βα∗

(β∗)2 −2α∗β∗ (α∗)2





uu

uv
vv


 (21.1)

which we agree to abbreviate

ζζζ = Qζζζ (21.2)

where Q is intended to suggest “quadratic.”

At an early point in his argument Kramers develops an interest in null
3-vectors. Such a vector, if we are to avoid triviality, must necessarily be
complex. He writes

aaa = bbb + iccc : require b2 = c2 and bbb···ccc = 0 (22)

Since a2
1 + a2

2 + a2
3 = 0 entails a3 = ±i

√
(a1 + ia2)(a1 − ia2) it becomes fairly

natural to introduce complex variables

u ≡
√
a1 − ia2

v ≡ i
√
a1 + ia2

10 Among those few was E. P. Wigner. Another was John L. Powell who, after
graduating from Reed College in , became a student of Wigner, learned
Kramers’ method from him, and provided an account of the subject in §7–2 of
his beautiful text.7 Powell cites the Appendix to Chapter VII in R. Courant &
D. Hilbert, Methods of Mathematical Physics, Volume I , where W. Magnus has
taken some similar ideas from “unpublished notes by the late G. Herglotz.”

11 H. Brinkman, Applications of Spinor Invariants in Atomic Physics ().
12 See, for example, “Algebraic theory of spherical harmonics” ().
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Then
a1 = 1

2 (u2 − v2)

a2 = i 1
2 (u2 + v2)

a3 ≡ −iuv


 (23)

The aaa(u, v) thus defined has the property that

aaa(u, v) = aaa(−u,−v) (24)

We conclude that, as (u, v) ranges over complex 2-space, aaa(u, v) ranges twice
over the set of null 3-vectors, of which (23) provides a parameterized description.

Thus prepared, we ask: What is the aaa �−→ aaa that results when S acts by
(17) on the parameter space? We saw at (21) that (17) induces

ζζζ �−→ ζζζ = Qζζζ (25)

while at (23) we obtained

aaa = Cζζζ with C ≡ 1
2


 1 0 −1

i 0 i
0 −2 0


 (26)

So we have

aaa �−→ aaa =Raaa (27.1)
R ≡ CQC –1 (27.2)

Mathematica is quick to inform us that, while R is a bit of a mess, it is a
mess with the property that every element is manifestly conjugation-invariant
(meaning real). And, moreover, that RT R = I . In short,

R is a real rotation matrix, an element of O(3)

To sharpen that statement we again (in the tradition of Sophus Lie) retreat
to the neighborhood of the identity and work in first order; from (8) we have

α = 1 + ik3 δθ

β = (k2 + ik1)δθ

}
(28)

Substitute into Q , abandon terms of second order and obtain

Q = I +


 2ik3 2(k2 + ik1) 0
−(k2 − ik1) 0 (k2 + ik1)

0 −2(k2 − ik1) −2ik3


 δθ + · · ·

whence (by calculation which I have entrusted to Mathematica)

R = I−


 0 −k3 +k1

+k3 0 −k2

−k1 +k2 0


2δθ + · · · (29)

↑
Note!
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This describes a doubled-angle rotation about kkk which is, however, retrograde.13

The preceding argument has served—redundantly, but by different means
—to establish

SU(2)←←→ O(3)

The main point of the discussion lies, however, elsewhere. We now back up to
(21) and head off in a new direction.

Spin matrices by Kramer’s method. For reasons that will soon acquire a high
degree of naturalness, we agree at this point in place of (17) to write

ξ( 1
2 ) �−→ ξ( 1

2 ) ≡ S( 1
2 ) ξ( 1

2 ) (30)

and to adopt this abbreviation of (21):

ζ(1) �−→ ζ(1) ≡ Q(1) ζ(1)

Mathematica informs us that the 3× 3 matrix Q(1) is unimodular

det Q(1) = 1

but not unitary. . .nor do we expect it to be: the invariance of u∗u+v∗v implies
that not of (uu)∗(uu) + (uv)∗(uv) + (vv)∗(vv) but of

(u∗u + v∗v)2 = (uu)∗(uu) + 2(uv)∗(uv) + (vv)∗(vv)

= ζt(1)G(1)ζ(1)

G(1) ≡


 1 0 0

0 2 0
0 0 1




Define

ξ(1) ≡
√

G ζ(1) with
√

G =


 1 0 0

0
√

2 0
0 0 1


 (31)

Then the left side of

ξt(1)ξ(1) = (u∗u + v∗v)2 =
[
ξt( 1

2 )ξ( 1
2 )

]2 (32)

is invariant under under the induced transformation

ξ(1) �−→ ξ(1) ≡ S(1) ξ(1) (33.1)

S(1) ≡ G+ 1
2 ·Q(1) ·G− 1

2 (33.2)

because the right side is invariant under ξ( 1
2 ) �−→ ξ( 1

2 ) ≡ S( 1
2 ) ξ( 1

2 ). We are

13 To achieve prograde rotation in the essay just cited I tacitly abandoned
Pauli’s conventions. I had reason at (2) to adopt those conventions, and here
pay the price. It was to make things work out as nicely as they have that at
(23) I departed slightly from the corresponding equations (27) in “Algebraic
theory. . . ”12
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not surprised to discover that the 3× 3 matrix

S(1) =


 α2

√
2αβ β2

−
√

2β∗α (α∗α− β∗β )
√

2α∗β
(β∗)2 −

√
2α∗β∗ (α∗)2


 (34)

is unitary and unimodular:

St(1) S(1) = I and det S(1) = 1 (35)

In the infinitesimal case14 we have

S(1) = I +


 +2ik3 +

√
2(k2 + ik1) 0

−
√

2(k2 − ik1) 0 +
√

2(k2 + ik1)
0 −

√
2(k2 − ik1) −2ik3


δθ + · · ·

which (compare (12)) can be written

S(1) = I + i δθ ·
(
k1σσ1(1) + k2σσ2(1) + k3σσ3(1)

)
+ · · · (36)

with

σσ1(1) ≡


 0 +

√
2 0√

2 0 +
√

2
0

√
2 0




σσ2(1) ≡ i


 0 −

√
2 0√

2 0 −
√

2
0

√
2 0




σσ3(1) ≡


 2 0 0

0 0 0
0 0 −2







(37)

The 3×3 matrices σσj(1) are manifestly traceless hermitian—the generators,
evidently, of a representation of SU(2) contained within the 8-parameter group
SU(3). They are, unlike the Pauli matrices (see again (6.3)), not closed under
multiplication,15 but are closed under commutation. In the latter respect the
precisely mimic the 2× 2 Pauli matrices:[

σσ1(
1
2 ) , σσ2(

1
2 )

]
= 2iσσ3(

1
2 )[

σσ2(
1
2 ) , σσ3(

1
2 )

]
= 2iσσ1(

1
2 )[

σσ3(
1
2 ) , σσ1(

1
2 )

]
= 2iσσ2(

1
2 )

: similarly

[
σσ1(1) , σσ2(1)

]
= 2iσσ3(1)[

σσ2(1) , σσ3(1)
]

= 2iσσ1(1)[
σσ3(1) , σσ1(1)

]
= 2iσσ2(1)


 (38)

14 The retreat to the neighborhood of the identity—which we have done
already several times, and will have occasion to do again—is accomplished by
this familiar routine: install (27), abandon terms of second order and simplify.

15 Quick computation shows, for example, that

σσ1(1) σσ1(1) = 2


 1 0 1

0 2 0
1 0 1


 , σσ2(1) σσ3(1) = 2


 0 0 0

i
√

2 0 i
√

2
0 0 0



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There are, however, some notable differences, which will acquire importance:

σσ2
1( 1

2 ) + σσ2
2( 1

2 ) + σσ2
3( 1

2 ) = 3
(

1 0
0 1

)
(39.05)

σσ2
1(1) + σσ2

2(1) + σσ2
3(1) = 8


 1 0 0

0 1 0
0 0 1


 (39.10)

We are within sight now of our objective, which is to say: we are in
possession of technique sufficient to construct (2# + 1)-dimensional traceless
hermitian triples {

σσ1(#), σσ2(#), σσ3(#)
}

: # = 3
2 , 2,

5
2 , . . . (40)

with properties that represent natural extensions of those just encountered. But
before looking to the details, I digress to assemble the. . .

Bare bones of the quantum theory of angular momentum. Classical mechanics
engenders interest in the construction LLL = rrr × ppp ; i.e., in

L1 = x2p3 − x3p2

L2 = x3p1 − x1p3

L3 = x1p2 − x2p1

The primitive Poisson bracket relations

[xm, xn] = [pm, pn] = 0 and [xm, pn] = δmn

are readily found to entail
[L1, L2] = L3

[L2, L3] = L1

[L3, L1] = L2

and
[L1, L

2] = [L2, L
2] = [L3, L

2] = 0

where L2 ≡ LLL···LLL = L2
1 +L2

2 +L2
3. In quantum theory those classical observables

become hermitian operators L1, L2, L3 and L2 ≡ L2
1 + L2

2 + L2
3 and Dirac’s

principle [xm, pn] = δmn −→ [xm, pn] = i
 I gives rise to commutation relations
that mimic the preceding Poisson bracket relations:

[L1, L2] = i
L3

[L2, L3] = i
L1

[L3, L1] = i
L2


 (41)

[L1, L2] = [L2, L2] = [L3, L2] = 0 (42)
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The function-theoretic approach to the subject16 proceeds from

x → xxx · and p → �

i∇∇∇

and leads (one works actually in spherical coordinates) to the theory of spherical
harmonics

Y m
� (xxx) :

{
# = 0, 1, 2, . . .
m = −#,−(#− 1), . . . ,−1, 0,+1, . . . ,+(#− 1),+#

L2Y m
� = #(# + 1) · Y m

�

L3Y
m
� = m
 · Y m

�

}
(43)

But the subject admits also of algebraic development, and that approach, while
it serves to reproduce the function-theoretic results just summarized, leads also
to a physically important algebraic extension

# = 0, 1
2 , 1,

3
2 , 2,

5
2 . . . (44)

of the preceding theory.

One makes a notational adjustment

L → J

to emphasize that one is talking now about an expanded subject (fusion of the
“theory of orbital angular momentum” and a “theory of intrinsic spin”) and
introduces non-hermitian “ladder operators”

J+ = J1 + iJ2

J− = J1 − iJ2

}
(45)

One finds the #th eigenspace of J2 to be (2# + 1)-dimensional, and uses J3 to
resolve the degeneracy. Let the normalized simultaneous eigenvectors of J2 and
J3 be denoted |#,m):

J2 |#,m) = #(# + 1)
2 · |#,m)
J3 |#,m) = m
 · |#,m)

(#,m|# ′,m′) = δ��′δmm′


 (46)

One finds that
J+|#,m) ∼ |#,m + 1) : m < #

J+|#,m) = 0 : m = #

}
(47.1)

J−|#,m) ∼ |#,m− 1) : m > −#
J+|#,m) = 0 : m = −#

}
(47.2)

16 See D. Griffiths’ Introduction to Quantum Mechanics (), §§4.1.2 and
4.3 or, indeed, any quantum text. For an approach (Kramers’) more in keeping
with the spirit of the present discussion see again my “Algebraic approach. . . ”12
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and that one has to introduce ugly renormalization factors

1


√

#(# + 1)−m(m± 1)
(48)

to turn the ∼’s into =’s.

My plan is not to make active use of this standard material, but to show
that the results we achieve by other means exemplify it. We note in that
connection that if matrices

{
σσ1, σσ2, σσ3

}
satisfy commutation relations of the

form (38), then the matrices

Jn ≡ 1
2
σσn : n = 1, 2, 3 (49)

bear the physical dimensionality of 
 (i.e., of angular momentum) and satisfy
(41); such matrices are called “angular momentum matrices” (more pointedly:
spin matrices).17

To reduce notational clutter we agree at this point to adopt units in which


 is numerically equal to unity

Simple dimensional analysis would serve to restore all missing 
 -factors.

Look now to particulars of the case # = 1
2 . We have

J1 = 1
2

(
0 1
1 0

)
, J2 = 1

2

(
0 −i
i 0

)
, J3 = 1

2

(
1 0
0 −1

)
(50.1)

whence

J2 ≡ J2
1 + J2

2 + J2
3 = 3

4

(
1 0
0 1

)
(50.2)

3
4 = 1

2

(
1
2 + 1

)
(50.3)

All 2-vectors are eigenvectors of J2. To resolve that universal degeneracy we
select J3 which, because it is diagonal, has obvious spectral properties:

eigenvalue + 1
2 with normalized eigenvector | 12 ,+ 1

2 ) ≡
(

1
0

)

eigenvalue − 1
2 with normalized eigenvector | 12 ,− 1

2 ) ≡
(

0
1

)

 (50.4)

17 The commutators of the generators Tn of O(3) were found at (14) to mimic
the Poisson bracket relations [L1, L2] = L3, etc. But if, in the spirit of the
preceding discussion, we construct Jn ≡ i
Tn we obtain [J1, J2] = −i
J3, etc.
which have reverse chirality .
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J1 and J2 have spectra identical to that of J3, but distinct sets of eigenvectors.
The ladder operators (45) become non-hermitian ladder matrices

J+ =
(

0 1
0 0

)
and J− =

(
0 0
1 0

)
(50.5)

By inspection we have

action of J+ :
(

0
1

)
↗

(
1
0

)
↗

(
0
0

)

action of J− :
(

1
0

)
↘

(
0
1

)
↘

(
0
0

) (50.6)

which are illustrative of (47). Note the absence in this case of normalization
factors; i.e., that the ∼’s have become equalities.

A better glimpse of the situation-in-general is provided by the case # = 1.
Reading from (37) we have

J1(1) ≡ 1
2


 0 +

√
2 0√

2 0 +
√

2
0

√
2 0




J2(1) ≡ i 1
2


 0 −

√
2 0√

2 0 −
√

2
0

√
2 0




J3(1) ≡


 1 0 0

0 0 0
0 0 −1







(51.1)

whence

J2 ≡ J2
1 + J2

2 + J2
3 =2


 1 0 0

0 1 0
0 0 1


 (51.2)

2 = 1(1 + 1) (51.3)

All 3-vectors are eigenvectors of J2. To resolve that universal degeneracy we
select J3 which, because it is diagonal, has obvious spectral properties:

eigenvalue +1 with normalized eigenvector |1,+1) ≡


 1

0
0




eigenvalue 0 with normalized eigenvector |1, 0) ≡


 0

1
0




eigenvalue −1 with normalized eigenvector |1,−1) ≡


 0

0
1







(51.4)
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The ladder matrices become

J+ =


 0

√
2 0

0 0
√

2
0 0 0


 and J− =


 0 0 0√

2 0 0
0
√

2 0


 (51.5)

which by quick calculation give

J+ |1,−1) =
√

2 |1, 0)

J+ |1, 0) =
√

2 |1,+1) (51.6 ↑)
J+ |1,+1) = 0

J− |1,+1) =
√

2 |1, 0)

J− |1, 0) =
√

2 |1,−1) (51.6 ↓)
J− |1,−1) = 0

Normalization now is necessary, and the factor

N±(#,m) ≡ 1√
#(# + 1)−m(m± 1)

(52)

advertised at (48) does in fact do the job, since

N+(1,−1) = 1/
√

2

N+(1, 0) = 1/
√

2

N−(1,+1) = 1/
√

2

N−(1, 0) = 1/
√

2

Spin 3/2. We look now to the case # = 3
2 , which was of special interest to

Penrose (as—for other reasons—it has been to quantum field theorists18), and
is of special interest therefore also to us. The simplest extension of the argument
that gave (21) now gives


uuu
uuv
uvv
vvv


 =




α3 3α2β 3αβ2 β3

−α2β∗ α2α∗−2αββ∗ 2αα∗β−β2β∗ α∗β2

α(β∗)2 −2αα∗β∗+β(β∗)2 α(α∗)2−2α∗ββ∗ (α∗)2β

−(β∗)3 3α∗(β∗)2 −3(α∗)2β∗ (α∗)3







uuu
uuv
uvv
vvv




18 See H. Umezawa, Quantum Field Theory (), p. 71 for discussion of
what the “Rarita– Schwinger formalism” (Phys. Rev. 60, 61 (1941)) has
to say about the case # = 3

2 . Relatedly: on p. 454 in I. Duck & E. C. G.
Sudarshan, Pauli and the Spin–Statistics Theorem () it is remarked that
“. . .The kinematics thus depends on the dynamics! As a result, for a charged
spin- 3

2 field the anticommutator. . .depends on the external field in such a
manner that quantization becomes inconsistent.”
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which we agree to abbreviate

ζ( 3
2 ) = Q( 3

2 )ζ( 3
2 )

Write

(u∗u + v∗v)3 = (uuu)∗(uuu) + 3(uuv)∗(uuv) + 3(uvv)∗(uvv) + (vvv)∗(vvv)

= ζ
t
( 3
2 ) G( 3

2 ) ζ( 3
2 )

G( 3
2 ) ≡




1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1




Define

ξ( 3
2 ) ≡

√
G ζ( 3

2 ) with
√

G =




1 0 0 0
0
√

3 0 0
0 0

√
3 0

0 0 0 1




Then the left side of

ξt( 3
2 )ξ( 3

2 ) = (u∗u + v∗v)3 =
[
ξt( 1

2 )ξ( 1
2 )

]3
is invariant under under the induced transformation

ξ( 3
2 ) �−→ ξ( 3

2 ) ≡ S( 3
2 ) ξ( 3

2 ) (53.1)

S( 3
2 ) ≡ G+ 1

2 ·Q( 3
2 ) ·G− 1

2 (53.2)

Mathematica informs us—now not at all to our surprise—that the 4×4 matrix

S( 3
2 ) =




α3 √
3α2β

√
3αβ2 β3

−
√

3α2β∗ α2α∗−2αββ∗ 2αα∗β−β2β∗ √
3α∗β2

√
3α(β∗)2 −2αα∗β∗+β(β∗)2 α(α∗)2−2α∗ββ∗ √

3(α∗)2β

−(β∗)3
√

3α∗(β∗)2 −
√

3(α∗)2β∗ (α∗)3


 (54)

is unitary and unimodular:

St( 3
2 ) S( 3

2 ) = I and det S( 3
2 ) = 1 (55)

Drawing again upon (28) we in leading order have

S( 3
2 ) =




α3 √
3β 0 0

−
√

3β∗ α2α∗ 2β 0

0 −2β∗ α(α∗)2
√

3β

0 0 −
√

3β∗ (α∗)3


 + · · ·

which becomes

S( 3
2 ) = I + i δθ ·

(
k1σσ1( 3

2 ) + k2σσ2( 3
2 ) + k3σσ3( 3

2 )
)

+ · · · (56)
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with

σσ1( 3
2 ) ≡




0 +
√

3 0 0√
3 0 +2 0

0 2 0 +
√

3
0 0

√
3 0




σσ2( 3
2 ) ≡ i




0 −
√

3 0 0√
3 0 −2 0

0 2 0 −
√

3
0 0

√
3 0




σσ3( 3
2 ) ≡




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3







(57)

By quick computation we verify that (compare (38))[
σσ1(

3
2 ) , σσ2(

3
2 )

]
= 2iσσ3(

3
2 )[

σσ2(
3
2 ) , σσ3(

3
2 )

]
= 2iσσ1(

3
2 )[

σσ3(
3
2 ) , σσ1(

3
2 )

]
= 2iσσ2(

3
2 )


 (58)

and find that (compare (39))

σσ2
1( 3

2 ) + σσ2
2( 3

2 ) + σσ2
3( 3

2 ) = 15




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (59)

Thus are we led by (49: 
 = 1) to the spin matrices

J1( 3
2 ) ≡ 1

2




0 +
√

3 0 0√
3 0 +2 0

0 2 0 +
√

3
0 0

√
3 0




J2( 3
2 ) ≡ i 1

2




0 −
√

3 0 0√
3 0 −2 0

0 2 0 −
√

3
0 0

√
3 0




J3( 3
2 ) ≡




3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2







(60.1)

which give

J2( 3
2 ) ≡ J2

1(
3
2 ) + J2

2(
3
2 ) + J2

3(
3
2 ) = 15

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (60.2)

15
4 = 3

2

(
3
2 + 1

)
(60.3)
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All 4-vectors are eigenvectors of J2( 3
2 ). To resolve that universal degeneracy

we select J3(
3
2 ) which, because it is diagonal, has obvious spectral properties:

eigenvalue + 3
2 with normalized eigenvector | 32 ,+ 3

2 ) ≡




1
0
0
0




eigenvalue + 1
2 with normalized eigenvector | 32 ,+ 1

2 ) ≡




0
1
0
0




eigenvalue − 1
2 with normalized eigenvector | 32 ,− 1

2 ) ≡




0
0
1
0




eigenvalue − 3
2 with normalized eigenvector | 32 ,− 3

2 ) ≡




0
0
0
1







(60.4)

J1(
3
2 ) and J2(

3
2 ) have spectra identical to that of J3(

3
2 ), but distinct sets of

eigenvectors. The ladder operators (45) become non-hermitian ladder matrices

J+( 3
2 ) =




0
√

3 0 0
0 0 2 0
0 0 0

√
3

0 0 0 0


 and J−( 3

2 ) =




0 0 0 0√
3 0 0 0

0 2 0 0
0 0

√
3 0


 (60.5)

By inspection we have

J+( 3
2 ) | 32 ,− 3

2 ) =
√

3 | 32 ,− 1
2 ) with N( 3

2 ,− 3
2 ) = 1/

√
3

J+( 3
2 ) | 32 ,− 1

2 ) = 2 | 32 ,+ 1
2 ) with N( 3

2 ,− 1
2 ) = 1/2

J+( 3
2 ) | 32 ,+ 1

2 ) =
√

3 | 32 ,+ 3
2 ) with N( 3

2 ,+
1
2 ) = 1/

√
3

J+( 3
2 ) | 32 ,+ 3

2 ) = 0


 (60.6 ↑)

and similar equations describing the step-down action of J−( 3
2 ). Matrices

identical to (60.1) and (60.5) appear on p. 203 of Schiff and p. 345 of Powell &
Crasemann.7

Spin 2. The pattern of the argument—which I have reviewed in plodding
detail—remains unchanged, so I will be content to record only the most salient
particulars. We look to the (19)-induced transformation of

ζ(2) ≡




uuuu
uuuv
uuvv
uvvv
vvvv



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and obtain ζ(2) = Q(2)ζ(2) where Q(2) is a 5× 5 mess. From

(u∗u + v∗v)4 = ζ
t
(2) G(2) ζ(2)

G(2) ≡




1 0 0 0 0
0 4 0 0 0
0 0 6 0 0
0 0 0 4 0
0 0 0 0 1




we are led to write

ξ(2) ≡
√

G ζ(2) with
√

G =




1 0 0 0 0
0
√

4 0 0 0
0 0

√
6 0 0

0 0 0
√

4 0
0 0 0 0 1




giving

ξ(2) �−→ ξ(2) ≡ S(2) ξ(2)

S(2) ≡ G+ 1
2 ·Q(2) ·G− 1

2

where S(2) is again a patterned mess (Mathematica assures us that S(2) is
unitary and unimodular) which, however, simplifies markedly in leading order:

S(2) =




α4 2β 0 0 0

−2β∗ α3α∗ √
6β 0 0

0 −
√

6β∗ α2(α∗)2
√

6β 0

0 0 −
√

6β∗ α(α∗)3 2β

0 0 0 −2β∗ (α∗)4


 + · · ·

= I + i




4k3 2(k1−ik2) 0 0 0

2(k1+ik2) 2k3
√

6(k1−ik2) 0 0

0
√

6(k1+ik2) 0
√

6(k1−ik2) 0

0 0
√

6(k1+ik2) −2k3 2(k1−ik2)

0 0 0 2(k1+ik2) −4k3


 + · · ·

From this information we extract the information reported on the next page:
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J1(2) = 1
2




0 +2 0 0 0

2 0 +
√

6 0 0

0
√

6 0 +
√

6 0

0 0
√

6 0 +2

0 0 0 2 0




J2(2) = i 1
2




0 −2 0 0 0

2 0 −
√

6 0 0

0
√

6 0 −
√

6 0

0 0
√

6 0 −2

0 0 0 2 0




J3(2) =




2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2







(61.1)

J2
1(2) + J2

2(2) + J2
3(2) =6 I (61.2)

6 = 2(2 + 1) (61.3)

The ladder matrices become

J+(2) =




0 2 0 0 0

0 0
√

6 0 0

0 0 0
√

6 0

0 0 0 0 2

0 0 0 0 0


 and J−(2) =




0 0 0 0 0

2 0 0 0 0

0
√

6 0 0 0

0 0
√

6 0 0

0 0 0 2 0


 (61.5)

in which connection we notice that

N+(2,+2) =∞
N+(2,+1) = 1/2

N+(2, 0) = 1/
√

6

N+(2,−1) = 1/
√

6
N+(2,−2) = 1/2

N−(2,+2) = 1/2

N−(2,+1) = 1/
√

6

N−(2, 0) = 1/
√

6
N−(2,−1) = 1/2
N−(2,−2) =∞

Extrapolation to the general case. The method just reviewed, as it relates to the
case # = 2, can in principle be extended to arbitrary #, but the labor increases
as #2. The results in hand are, however, so highly patterned and so simple that
one can readily guess the design of

{
J1(#), J2(#), J3(#)

}
, and then busy oneself

demonstrating that one’s guess is actually correct. I illustrate how one might
proceed in the case # = 5

2 .
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We expect in any event to have

J3(
5
2 ) =




5
2

3
2

1
2
− 1

2
− 3

2
− 5

2


 (62.1)

where (as henceforth) the omitted matrix elements are 0’s. And we guess that
J1(

5
2 ) and J2(

5
2 ) are of the designs

J1(
5
2 ) = 1

2




0 +a
a 0 +b

b 0 +c
c 0 +d

d 0 +e
e 0




J2(
5
2 ) = i 1

2




0 −a
a 0 −b

b 0 −c
c 0 −d

d 0 −e
e 0




To achieve J1 J2 − J2 J1 = i J3 we ask Mathematica to solve the equations

1
2

(
a2

)
= + 5

2

1
2

(
b2 − a2

)
= + 3

2

1
2

(
c2 − b2

)
= + 1

2

1
2

(
d2 − c2

)
= − 1

2

1
2

(
e2 − d2

)
= − 3

2

1
2

(
− e2

)
= − 5

2

and are informed that
a = ±

√
5

b = ±
√

8

c = ±
√

9

d = ±
√

8

e = ±
√

5

where the signs are independently specifiable. Take all signs to be positive (any
of the 25 − 1 = 31 alternative sign assignments would, however, work just as
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well) and obtain

J1(
5
2 ) = 1

2




0 +
√

5√
5 0 +

√
8√

8 0 +
√

9√
9 0 +

√
8√

8 0 +
√

5√
5 0




J2(
5
2 ) = i 1

2




0 −
√

5√
5 0 −

√
8√

8 0 −
√

9√
9 0 −

√
8√

8 0 −
√

5√
5 0







(62.2)

The commutation relations check out, and we have

J2
1(

5
2 ) + J2

2(
5
2 ) + J2

3(
5
2 ) = 35

4 I

35
4 = 5

2 ( 5
2 + 1)

We observe that

N+( 5
2 ,+

5
2 ) =∞

N+( 5
2 ,+

3
2 ) = 1/

√
5

N+( 5
2 ,+

1
2 ) = 1/

√
8

N+( 5
2 ,− 1

2 ) = 1/
√

9

N+( 5
2 ,− 3

2 ) = 1/
√

8

N+( 5
2 ,− 5

2 ) = 1/
√

5

N+( 5
2 ,+

5
2 ) = 1/

√
5

N+( 5
2 ,+

3
2 ) = 1/

√
8

N+( 5
2 ,+

1
2 ) = 1/

√
9

N+( 5
2 ,− 1

2 ) = 1/
√

8

N+( 5
2 ,− 3

2 ) = 1/
√

5
N+( 5

2 ,− 5
2 ) =∞

In the general case we would (i) compute the numbers

1/N+(#,m) : m = −#, . . . ,+(#− 1) (63)

(ii) insert them into off-diagonal positions in the now obvious way to construct
J1(#) and J2(#), (iii) adjoin

J3 =




#
(#− 1)

. . .
−(#− 1)

−#


 (64)

and be done.

Concluding remarks. We find ourselves—now that the dust has settled—doing
pretty much what Schiff advocates on his (notationally dense) pages 200–203.
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David Griffiths reports in conversation that he himself proceeds in a manner
that he considers to be “non-standard” (though it is the method advocated by
Powell & Crasemann in their §10–4): he takes the descriptions (64) and (52)
of J3 and N±(#,m) to be given; constructs J± matrices that, on the pattern of
(51.6) and (60.6), do their intended work; assembles

J1 = 1
2

(
J+ + J−

)
J2 = −i 1

2

(
J+ − J−

)
The merit (such as it is) of my own approach lies in the fact that it

is “constructive;” it draws explicit attention to the circumstance that the
(2#+1)×(2#+1) unimodular unitary matrices S(#)—elements of SU(2#+1)—
which supply the (2# + 1)-spinor representation of O(3) act upon

ξ =




ξ0
ξ1
...
ξn
...

ξ2�




in such a way that

ξn transforms like
√(

2�
n

)
· u2�−n vn : n = 0, 1, . . . , 2#

under (17).

What has any of this to do with “Majorana’s method”? That is a question
to which I turn in Part B of this short series of essays, to which I have given
the collective title aspects of the mathematics of spin.


